Schulinterner Lehrplan

Gymnasium Horn Bad-Meinberg

- Sekundarstufe II

Chemie

(Fassung vom 31.10.2024)

Kapitel 1: Rahmenbedingungen der fachlichen Arbeit

1.1 Leitbild der Schule

Das im Jahr 1995 gegründete und zusammen mit einer Grund-, einer Sekundarschule und einer Förderschule in das Schulzentrum Püngelsberg eingebettete Gymnasium Horn-Bad Meinberg wird derzeit von 630 Schülerinnen und Schülern besucht, die von 60 Lehrkräften, davon 10 Referendarinnen und Referendaren, unterrichtet werden. Die Sekundarstufe I ist dreizügig angelegt.

Das Gymnasium Horn-Bad Meinberg sieht sich ausweislich seines Schulprogramms dem Leitbild einer "Guten gesunden Schule" verpflichtet: Das Gymnasium ist bestrebt, bei seinen Schülerinnen und Schülern und den Unterrichtenden gleichermaßen Kompetenzen und Haltungen zu fördern, die ihre Bereitschaft zum lebenslangen Lernen und zur Übernahme von Verantwortung für sich und die Gemeinschaft stärken und sie befähigen, in einer sich rasant wandelnden Gesellschaft gesund und erfolgreich zu leben.

Auch bei der Gestaltung der Rahmenbedingungen ist die Salutogenese maßgebliches Prinzip: Unter Anwendung der aktuellen Erkenntnisse aus den Gesundheits- und Bildungswissenschaften leistet das Gymnasium einen Beitrag zu einer nachhaltigen Schul- und Unterrichtsentwicklung unter Förderung der Lern- und Leistungsfähigkeit von Lernenden und Lehrenden mit dem Ziel der Steigerung der Zufriedenheit und des Wohlbefindens aller am Schulleben Beteiligten (Schülerinnen und Schülern, Eltern, Lehrpersonen, Schulleitung, nicht unterrichtendem Personal).

Als ein wesentliches Instrument der Sicherung von Schulqualität und Impulsgeber zugleich versteht das Gymnasium Formen der externen Evaluation, wie die erstmals im Jahr 2014 durchlaufene Qualitätsanalyse des MSB und die in den Jahren 2010 und 2014 erfolgreich absolvierten Bewerbungen um den Schulentwicklungspreis der Unfallkasse NRW. Aus der Erkenntnis, dass Feedback als einer der wirkmächtigsten Erfolgsfaktoren in der Schul- und Unterrichtsentwicklung angesehen werden muss, folgten in den Jahren 2012 und 2017 eine jeweils schulweit angelegte Befragung zu den Bereichen "Unterrichtsqualität", "Schulklima", "Schule als Lernort und Lebensraum" sowie "Schulleitung und Schulmanagement" sowie die Etablierung eines durch jeden Unterrichtenden halbjährlich in einer Lerngruppe durchgeführten dialogischen Unterrichtsfeedbacks im Schuljahr 2018/19.

1.2 Rahmenbedingungen des schulischen Umfelds

Horn-Bad Meinberg nahe dem Teutoburger Wald ist eine Stadt mit derzeit etwa 18000 Einwohnern. Die Gemeinde setzt sich zusammen aus dem gewerblich und industriell geprägten Stadtteil Horn und dem Kurort Bad Meinberg sowie aus 14 weiteren teils landwirtschaftlich, teils touristisch ausgerichteten Gemeinden. Die attraktive und naturnahe Lage bietet den Schülerinnen und Schülern zahlreiche Lern- und Erlebniserfahrungen:

- einen Standort im Grünen mit einem "Grünen Klassenzimmer";
- die Einbettung des Gymnasiums Horn-Bad Meinberg in die Gesundheitsregion Teutoburger Wald: Moorvorkommen, Heilquellen, Bad Meinberger Mineralbrunnen als Kooperationspartner;
- die Altstadt mit ihrem mittelalterlichen Dreistraßensystem, der Stadtmauer, Burg und anderen Baudenkmälern;
- die Anbindung an kultur-historische Ausflugsziele in der näheren Umgebung mit dem "Kulturbus" (Externsteine, Velmerstot, Silberbachtal, die Nachbarstadt Detmold mit Hermannsdenkmal, Adlerwarte, Schloss, Museen, u. a. das Freilichtmuseum);
- eine gute Vernetzung mit überörtlichen digital-technologischen Entwicklungszentren (Innovation Campus Lemgo und Creativ Campus Detmold);
- gewerbliche regionale Kleine und Mittlere Unternehmen (KMU) verschiedener Branchen sowie Hochschulen im Kontext einer qualifizierten Studien- und Berufswahlorientierung.

In dem Bemühen um reibungslos gestaltete Übergänge arbeiten die Schulformen sehr vertrauensvoll zusammen. Die im Jahr 2012 fertiggestellte Mensa in Regie eines Integrationsbetriebes gewährleistet ein vielseitiges frisch zubereitetes Mittagsangebot.

Das Schulgebäude überzeugt durch seine klare Gliederung und vor allem durch den offenen und lichtdurchfluteten Eingangsbereich. Helle, freundliche Klassenräume und die sehr gute fachliche Ausstattung unterstützen eine günstige Lern- und Arbeitsatmosphäre. Im Zuge der Einführung von "G9 neu" ist auf einen Erweiterungsbau zu hoffen, der neben dem dann für den neunten Jahrgang erforderlichen Raumbedarf auch den Bedarfen hinsichtlich Räumen für Laufbahnberatungen, Berufsorientierung und äußerer Differenzierung Rechnung trägt. Durch die maßgebliche Unterstützung des Fördervereins erfährt der Schulhof eine sukzessive Ausgestaltung mit Bewegungsgeräten, u.a. untergebracht in der Sportranch, im Sinne einer Bewegten Pause. Damit deutet die architektonische Konzeption des freundlichen und hellen Gebäudes bereits programmatische Akzentuierungen an: Die Schule bietet offene Perspektiven auf einem festen Fundament.

Die Übermittagsbetreuung des schuleigenen Vereins "Mittag in Horn e.V." eröffnet neben einer Hausaufgabenbetreuung und den Peer-Learning-Angeboten "Schüler helfen Schülern" sowie "Schülercoaching" differenzierte (inter-) kulturelle, sportliche, musikalische und damit insbesondere gemeinschaftsbildende Angebote.

1.3 Schulische Standards zum Lehren und Lernen

Das sog. Aufgeklärte Doppelstundenmodell, nach dem am Gymnasium Horn-Bad Meinberg unterrichtet wird, unterstützt die Umsetzung schüleraktivierender Methoden sowie von Maßnahmen individueller Förderung.

Die Verantwortung für eine Klasse / Jahrgangsstufe übernimmt jeweils ein Team aus einer Lehrerin und einem Lehrer.

Durch die - freiwillige - Teilnahme am Bläser-Streicher-Projekt in der Erprobungsstufe erweitern die Schülerinnen und Schüler nicht nur ihre musikalischen Fertigkeiten, sondern erleben überdies positive Auswirkungen auf Konzentrationsfähigkeit und soziales Verhalten.

Ebenfalls in den Jahrgangsstufen 5 und 6 verortet ist die sog. SiM (Soziales in Medien)-Stunde, in der die sozialen Kompetenzen (z.B. mittels Einführung des Klassenrats) ebenso geschult werden wie die medialen (Umgang mit Word, Exel, Powerpoint), wobei der vom Schulträger auf der Basis eines gemeinsam erstellten Technisch-pädagogischen Einsatzkonzeptes u.a. avisierte flächendeckende Breitband-Ausbau einen unverzichtbaren Beitrag leisten wird.

Ebenfalls im Rahmen der in der Stundentafel veranschlagten sog. Pflichtergänzungsstunden wählen sich die Schülerinnen und Schüler der Jahrgangsstufe 5 in ein Neigungsprojekt ein, in dem sie ihren literarisch-musisch-künstlerischen oder naturwissenschaftlichen Interessen nachgehen. Im Falle von in den Kernfächern auftretenden Unsicherheiten unterstützt ein Lernstudio in Deutsch, Englisch oder Mathematik.

Vor dem Hintergrund der Wiedereinführung von G9 wird auch der Wahlpflichtbereich II neu zu strukturieren sein, der derzeit neben dem Angebot einer dritten Fremdsprache (Französisch oder Spanisch, letztere in Kooperation mit der benachbarten Sekundarschule), einem MINT-Kurs und einem WiSo-Kurs auch einen Kurs "Buddy Plus" in Kooperation mit der ortsansässigen Schule am Teutoburger Wald mit dem Förderschwerpunkt "Geistige Entwicklung" sowie einen Kurs "Literatur on stage" - ebenfalls im Verbund mit der Sekundarschule - umfasst.

Freiwillige Ergänzungsstunden sieht die Stundentafel in der Jahrgangsstufe 8 in den Sprachen sowie Mathematik im Rahmen der Lernimpulse Plus (LiP) vor, - zudem wird in der Jahrgangsstufe 9 Zeit für eine projektorientiert angelegte Besondere Lernleistung eingeräumt.

Die Schulinternen Lehrpläne weisen neben den fachlichen Spezifikationen und einem Leistungsbewertungskonzept fortan explizit sog. **Fachübergreifende Kompetenzen / Querschnittsaufgaben** aus, die Schwerpunktsetzungen der aktuellen Schul- und Unterrichtsentwicklung entsprechen:

- Demokratie lernen und leben
- Soziales Lernen
- Umwelt- und Gesundheitserziehung
- Medienbildung und –erziehung
- Studien- und Berufsorientierung
- Kulturelle und Interkulturelle Bildung
- Verbraucherbildung
- Begabungs- und Exzellenzförderung
- Durchgängige Sprachbildung
- Fächerverbindendes Lernen.

Es ergibt sich mithin die Möglichkeit, die den Schulinternen Lehrplänen vorangestellten sog. Lernpartituren hinsichtlich bestimmter Schulentwicklungsbausteine zu sichten und deren Verankerung fach- und jahrgangsübergreifend nachzuvollziehen.

1.4 Zusammenarbeit mit außerschulischen Partnern

Um den Übergang von der Grundschule zum Gymnasium Horn-Bad Meinberg fließend zu gestalten, steht das Gymnasium Horn-Bad Meinberg in Kontakt zu den Grundschulen des Einzugsgebiets.

Mit der im Jahre 2013 gegründeten Sekundarschule Horn-Bad Meinberg besteht eine Kooperationsvereinbarung. Hierin wird formuliert, dass beide Schulen ein gemeinsames Interesse daran haben, für alle Schüler, die in der Stadt Horn-Bad Meinberg leben, ein wohnortnahes, pädagogisch und fachlich anerkanntes Schulformangebot mit allen Abschlussmöglichkeiten zu bieten.

Im Netzwerk "Zukunftsschulen NRW" finden Schulen Raum für eine begleitete Netzwerkarbeit im Bereich der Individuellen Förderung und in Unterstützung der Schul- und Unterrichtsentwicklung. Das Gymnasium Horn-Bad Meinberg kooperiert mit dem Städtischen Gymnasium Barntrup, dem Hermann-Vöchting-Gymnasium Blomberg und dem Ratsgymnasium Bielefeld.

Das Gymnasium führt als Profilklasse eine Bläser-Streicher-Klasse in den Klassen 5 und 6. Der Instrumentalunterricht wird durch Lehrkräfte der Johannes-Brahms-Schule (Musikschule für Detmold, Blomberg, Horn-Bad Meinberg) in Absprache mit der Fachschaft Musik gestaltet.

Seit der Spielzeit 2012/13 besteht eine Kooperation mit dem Landestheater Detmold zur kulturellen Bildung.

Ziel der seit 2006 bestehenden Kooperation mit dem ortsansässigen Unternehmen Staatlich Bad Meinberger Mineralbrunnen GmbH & Co. KG ist es, die fachliche und überfachliche Unterrichtsarbeit durch die Zusammenarbeit mit einem leistungsfähigen, außerschulischen Partner zu bereichern und insbesondere den Praxisbezug zu stärken.

Eine Kooperation besteht auf dem sportlichen Sektor mit dem benachbarten Tennisclub Blau-Weiß Horn mit dem Ziel der Bereicherung des Schulsports und des Übermittagsangebots sowie der Unterstützung der Schultennismannschaften.

Mit der AOK NordWest gibt es seit dem Schuljahr 2017/18 eine Vereinbarung zur Durchführung des erlebnispädagogischen Projekts "natürlich erleben", das zugleich Bestandteil des Schulinternen Lehrplans Biologie der Jahrgangsstufe 7 ist.

Neben das in den Französischunterricht der Jahrgangsstufe 8 integrierte Schüleraustauschprogramm mit einem Collège der französischen Partnerstadt Horn-Bad Meinbergs, Villedieu-les-Poêles, sowie einem Collège in Bréhal in der Normandie tritt die im Schuljahr 2016/17 begründete Partnerschaft mit dem Lyzeum der Stadt Chodziez nahe Posens für Schülerinnen und Schüler der Sekundarstufe II, die den interkulturellen Austausch befördern.

Das Gymnasium Horn-Bad Meinberg bietet Studierenden des Lehramts an Gymnasien den Lernort für das in Vorbereitung, Durchführung und Evaluation professionell betreute Praxissemester (Masterphase) bzw. Eignungs- und Orientierungspraktika (Bachelorphase), wobei für das Fachpraktikum "Musik" im Rahmen der Kooperation des Gymnasiums Horn-Bad Meinberg mit der Hochschule für Musik Detmold (HfM) ein besonderes Kontingent an Praktikumsplätzen bereitgestellt wird, - gleiches gilt im Zuge des Kooperationsprojekts zur intensiveren Vernetzung von Hochschul- und Schulausbildung im Rahmen des gymnasialen Lehramtsstudiums bezogen auf das Fach Philosophie/Praktische Philosophie zwischen der Universität Paderborn und dem Gymnasium Horn-Bad Meinberg. In der zweiten Phase ihrer Lehrerausbildung befindliche Studienreferendarinnen und –referendare finden ebenso alle erforderlichen Rahmenbedingungen für eine gelingende Ausbildung vor.

1.5 Fachspezifika

Das Fach Chemie leistet gemeinsam mit den anderen naturwissenschaftlichen Fächern einen Beitrag zum Bildungsziel einer vertieften naturwissenschaftlichen Grundbildung.

Den Besonderheiten des Faches Chemie wird insoweit Rechnung getragen, dass das Experiment im Fokus des Unterrichts steht. Aus diesem Grund wird angestrebt, den Anteil an Experimenten, in der Jahrgangsstufe 7 vor allem als Schülerexperiment, hoch zu halten. In der Jahrgangsstufe 8 wird das Fach Chemie epochal unterrichtet, in den anderen Jahrgangsstufen durchgängig. In der Oberstufe wird Chemie in der Regel durchgängig als Grundkurs bis zum Abitur unterrichtet.

2.1 Unterrichtsvorhaben

In der nachfolgenden Übersicht über die *Unterrichtsvorhaben* wird die für alle Lehrerinnen und Lehrer gemäß Fachkonferenzbeschluss verbindliche Verteilung der Unterrichtsvorhaben dargestellt. Die Übersicht dient dazu, für die einzelnen Jahrgangsstufen allen am Bildungsprozess Beteiligten einen schnellen Überblick über Themen bzw. Fragestellungen der Unterrichtsvorhaben unter Angabe besonderer Schwerpunkte in den Inhalten und in der Kompetenzentwicklung zu verschaffen. Dadurch soll verdeutlicht werden, welches Wissen und welche Fähigkeiten in den jeweiligen Unterrichtsvorhaben besonders gut zu erlernen sind und welche Aspekte deshalb im Unterricht hervorgehoben thematisiert werden sollten. Unter den Hinweisen des Übersichtsrasters werden u.a. Möglichkeiten im Hinblick auf inhaltliche Fokussierungen und interne Verknüpfungen ausgewiesen.

Der ausgewiesene Zeitbedarf versteht sich als grobe Orientierungsgröße, die nach Bedarf über- oder unterschritten werden kann. Der Schulinterne Lehrplan ist so gestaltet, dass er zusätzlichen Spielraum für Vertiefungen, besondere Interessen von Schülerinnen und Schülern, aktuelle Themen bzw. die Erfordernisse anderer besonderer Ereignisse (z.B. Praktika, Klassenfahrten o.Ä.) belässt. Abweichungen über die notwendigen Absprachen hinaus sind im Rahmen des pädagogischen Gestaltungsspielraumes der Lehrkräfte möglich.

	Jahrgangsstufe EF				
Unterrichtsvorhaben	Inhaltsfelder	Kompetenzerwartungen des KLP und Schwerpunkte der Kompetenzentwicklung	Didaktisch-methodische Anmerkungen und Vorschläge	Weitere Vereinbarungen	
Unterrichtsvorhaben I	Inhaltsfeld Organische Stoffklassen	ordnen organische Verbindungen			
Die Anwendungsvielfalt der Alkohole	funktionelle Gruppen verschiedener Stoffklassen und ihre Nachweise: Hydroxygruppe, Carbonylgruppe, Carboxygruppe und Estergruppe	aufgrund ihrer funktionellen Gruppen in Stoffklassen ein und benennen diese nach systematischer Nomenklatur (S1, S6, S11),	Elektronenpaarbindung, zwischenmolekularen Wechselwirkungen, der Stoffklasse der Alkane und deren Nomenklatur		
Kann Trinkalkohol gleichzeitig		 erläutern intermolekulare 	Untersuchungen von Struktur-		
Gefahrstoff und Genussmittel sein?	Eigenschaften ausgewählter Stoffklassen: Löslichkeit, Schmelztemperatur,	Wechselwirkungen organischer Verbindungen und erklären ausgewählte Eigenschaften sowie die			
Alkohol(e) auch in	Siedetemperatur	Verwendung organischer Stoffe auf dieser Grundlage (S2, S13, E7),	Experimentelle Erarbeitung der Oxidationsreihe der Alkohole		
Kosmetikartikeln?	Elektronenpaarbindung: Einfach- und Mehrfachbindungen, Molekülgeometrie (EPA-Modell)	 erläutern das Donator-Akzeptor- Prinzip unter Verwendung der 			

ca. 30 UStd.	Konstitutionsisomerie intermolekulare Wechselwirkungen	Oxidationszahlen am Beispiel der Oxidationsreihe der Alkanole (S4, S12, S14, S16),	Erarbeitung eines Fließschemas zum Abbau von Ethanol im menschlichen Körper
	Oxidationsreihe der Alkanole:	stellen Isomere von Alkanolen	Bewertungsaufgabe zur Frage
	Oxidationszahlen	dar und erklären die	Ethanol – Genuss- oder Gefahrstoff?
	Estersynthese	Konstitutionsisomerie (S11, E7),	und Berechnung des
		, , ,	Blutalkoholgehaltes
		 stellen auch unter Nutzung 	<u> </u>
		digitaler Werkzeuge die	Untersuchung von
		Molekülgeometrie von	Struktureigenschaftsbeziehungen
		Kohlenstoffverbindungen dar und	weiterer Alkohole in
		erklären die Molekülgeometrie	Kosmetikartikeln
		mithilfe des EPA-Modells (E7, S13),	
		, , , ,	Recherche zur Funktion von
		deuten die Beobachtungen von	Alkoholen in Kosmetikartikeln mit
		Experimenten zur Oxidationsreihe	anschließender Bewertung
		der Alkanole und weisen die	
		jeweiligen Produkte nach (E2, E5,	
		S14),	
		 stellen Hypothesen zu 	
		Struktureigenschaftsbeziehungen	
		einer ausgewählten Stoffklasse auf	
		und untersuchen diese experimentell	
		(E3, E4),	
		beurteilen die Auswirkungen der	
		Aufnahme von Ethanol hinsichtlich	
		oxidativer Abbauprozesse im	
		menschlichen Körper unter Aspekten	
		der Gesunderhaltung (B6, B7, E1,	
		E11, K6), (VB B Z6)	
		 beurteilen die Verwendung von 	
		Lösemitteln in Produkten des Alltags	
		auch im Hinblick auf die Entsorgung	
		aus chemischer und ökologischer	
		Perspektive (B1, B7, B8, B11, B14, S2,	
		S10, E11).	
		J10, L11).	

U	nte	rric	hts	vorh:	aben	Ш
v			1113	7 O I I I I	aven	

Wie lässt sich die Reaktionsgeschwindigkeit bestimmen und beeinflussen?

ca. 14 UStd.

Inhaltsfeld Reaktionsgeschwindigkeit und chemisches Gleichgewicht

- Reaktionskinetik: Beeinflussung der Reaktionsgeschwindigkeit
- Gleichgewichtsreaktionen: Prinzip von Le Chatelier; Massenwirkungsgesetz (Kc)
 - natürlicher Stoffkreislauf
 - technisches Verfahren
- Steuerung chemischer Reaktionen: Oberfläche, Konzentration, Temperatur und Druck
 - Katalyse

- erklären den Einfluss eines Katalysators auf die Reaktionsgeschwindigkeit auch anhand grafischer Darstellungen (S3, S8, S9),
- überprüfen aufgestellte Hypothesen zum Einfluss verschiedener Faktoren auf die Reaktionsgeschwindigkeit durch Untersuchungen des zeitlichen Ablaufs einer chemischen Reaktion (E3, E4, E10, S9),
- definieren die Durchschnittsgeschwindigkeit chemischer Reaktionen und ermitteln diese grafisch aus experimentellen Daten (E5, K7, K9),
- stellen den zeitlichen Ablauf chemischer Reaktionen auf molekularer Ebene mithilfe der Stoßtheorie auch unter Nutzung digitaler Werkzeuge dar und deuten die Ergebnisse (E6, E7, E8, K11). (MKR 1.2)

Planung und Durchführung qualitativer Experimente zur Reaktionsgeschwindigkeit

Definition der
Reaktionsgeschwindigkeit und deren
quantitative Erfassung durch
Auswertung entsprechender
Messreihen

Materialgestützte Erarbeitung der Funktionsweise eines Katalysators und Betrachtung unterschiedlicher Anwendungsbereiche in Industrie und Alltag

Unterrichtsvorhaben III

Aroma- und Zusatzstoffe in Lebensmitteln

Fußnoten in der Speisekarte – Was verbirgt sich hinter den sogenannten E-Nummern?

Fruchtiger Duft im Industriegebiet – Wenn mehr Frucht benötigt wird als angebaut werden kann

Inhaltsfeld Organische Stoffklassen

- funktionelle Gruppen verschiedener Stoffklassen und ihre Nachweise: Hydroxygruppe, Carbonylgruppe, Carboxylgruppe und Estergruppe
- Eigenschaften ausgewählter Stoffklassen:

- ordnen organische Verbindungen aufgrund ihrer funktionellen Gruppen in Stoffklassen ein und benennen diese nach systematischer Nomenklatur (S1, S6, S11),
- erläutern intermolekulare
 Wechselwirkungen organischer
 Verbindungen und erklären
 ausgewählte Eigenschaften sowie die
 Verwendung organischer Stoffe auf
 dieser Grundlage (S2, S13, E7),
- führen Estersynthesen durch und leiten aus Stoffeigenschaften der erhaltenen Produkte Hypothesen zum strukturellen Aufbau der Estergruppe ab (E3, E5),

Materialgestützte Erarbeitung der Stoffklasse der Carbonsäuren hinsichtlich ihres Einsatzes als Lebensmittelzusatzstoff und experimentelle Untersuchung der konservierenden Wirkung ausgewählter Carbonsäuren

Experimentelle Herstellung eines
Fruchtaromas und Auswertung des
Versuches mit Blick auf die
Erarbeitung und Einführung der
Stoffklasse der Ester und ihrer
Nomenklatur sowie des chemischen
Gleichgewichts

ca. 16 UStd.

Löslichkeit, Schmelztemperatur, Siedetemperatur,

- Elektronenpaarbindung: Einfach- und Mehrfachbindungen, Molekülgeometrie (EPA-Modell)
 - Konstitutionsisomerie
- intermolekulare
 Wechselwirkungen
- Oxidationsreihe der Alkanole: Oxidationszahlen
 - Estersynthese

Inhaltsfeld Reaktionsgeschwindigkeit und chemisches Gleichgewicht

- Reaktionskinetik:
 Beeinflussung der
 Reaktionsgeschwindigkeit
 - Gleichgewichtsreaktionen:

Prinzip von Le Chatelier;

Massenwirkungsgesetz (Kc)

natürlicher Stoffkreislauf
 technisches Verfahren

- diskutieren den Einsatz von Konservierungs- und Aromastoffen in der Lebensmittelindustrie aus gesundheitlicher und ökonomischer Perspektive und leiten entsprechende Handlungsoptionen zu deren Konsum ab (B5, B9, B10, K5, K8, K13), (VB B Z3)
- beschreiben die Merkmale eines chemischen Gleichgewichtes anhand ausgewählter Reaktionen (S7, S15, K10),
- bestimmen rechnerisch
 Gleichgewichtslagen ausgewählter
 Reaktionen mithilfe des
 Massenwirkungsgesetzes und interpretieren diese (S7, S8, S17),
- simulieren den chemischen Gleichgewichtszustand als dynamisches Gleichgewicht auch unter Nutzung digitaler Werkzeuge (E6, E9, S15, K10). (MKR 1.2)

Veranschaulichung des chemischen Gleichgewichts durch ausgewählte Modellexperimente

Diskussion um die Ausbeute nach Herleitung und Einführung des Massenwirkungsgesetzes

Bewertung des Einsatzes von Konservierungs- und Aromastoffen in der Lebensmittelindustrie

	 Steuerung chemischer 			
	Reaktionen: Oberfläche,			
	Konzentration, Temperatur			
	und Druck			
	. Vataluas			
	• Katalyse			
Unterrichtsvorhaben IV:	Inhaltsfeld	• erklären den Einfluss eines	Materialgestützte Erarbeitung des	
	Reaktionsgeschwindigkeit und	Katalysators auf die	natürlichen Kohlenstoffkreislaufes	
Kohlenstoffkreislauf und	chemisches Gleichgewicht	Reaktionsgeschwindigkeit auch anhand grafischer Darstellungen (S3,	Fokussierung auf anthropogene	
Klima		S8, S9)	Einflüsse hinsichtlich zusätzlicher	
	Reaktionskinetik:	30, 33,	Kohlenstoffdioxidemissionen	
Welche Auswirkungen hat ein	Beeinflussung der	beschreiben die Merkmale eines		
Anstieg der Emission an	Reaktionsgeschwindigkeit	=	Exemplarische Vertiefung des	
Kohlenstoffdioxid auf die		ausgewählter Reaktionen (S7, S15,	Kohlensäure-Kohlenstoffdioxid-	
Versauerung der Meere?	Gleichgewichtsreaktionen:	K10)	Gleichgewichtes und Erarbeitung des	
	Prinzip von Le Chatelier;	 erklären anhand ausgewählter 	Prinzips von Le Chatelier	
Welchen Beitrag kann die	Massenwirkungsgesetz (Kc)	Reaktionen die Beeinflussung des	Beurteilen die Folgen des	
chemische Industrie durch die	masser mangsgesetz (no)	chemischen Gleichgewichts nach	menschlichen Eingriffs in natürliche	
Produktion eines synthetischen	natürlicher Stoffkreislauf	· ·	Stoffkreisläufe	
Kraftstoffes zur Bewältigung	technisches Verfahren	Zusammenhang mit einem		
der Klimakrise leisten?	- teeningenes veriainen	technischen Verfahren (S8, S15, K10)	Materialgestützte Erarbeitung der Methanolsynthese im Rahmen der	
der kilmakrise leisteri:	Steuerung chemischer	 beurteilen den ökologischen wie 	Diskussion um alternative Antriebe	
ca. 20 UStd.	Reaktionen: Oberfläche,	ökonomischen Nutzen und die	in der Binnenschifffahrt	
ca. 20 03tu.	,	Grenzen der Beeinflussbarkeit		
	Konzentration, Temperatur und Druck	chemischer Gleichgewichtslagen in		
	und Druck	einem technischen Verfahren (B3,		
	• Katalysa	B10, B12, E12)		
	Katalyse	analysieren und beurteilen im		
		Zusammenhang mit der jeweiligen		
		Intention der Urheberschaft		
		verschiedene Quellen und		
		Darstellungsformen zu den Folgen		
		anthropogener Einflüsse in einem natürlichen Stoffkreislauf (B2, B4, S5,		
		K1, K2, K3, K4, K12), (MKR 2.3, 5.2)		
		,,,, (
	l	l	l	

			• bewerten die Folgen eines Eingriffs in einen Stoffkreislauf mit Blick auf Gleichgewichtsprozesse in aktuell-gesellschaftlichen Zusammenhängen (B12, B13, B14, S5, E12, K13). (VB D Z3)		
--	--	--	---	--	--

	Jahrgangsstufe Q1					
Unterrichtsvorhaben	Inhaltsfelder	Kompetenzerwartungen des KLP und Schwerpunkte der Kompetenzentwicklung	Didaktisch-methodische Anmerkungen und Vorschläge	Weitere Vereinbarungen		
Unterrichtsvorhaben I Saure und basische Reiniger im Haushalt Welche Wirkung haben Säuren und Basen in sauren und basischen Reinigern? Wie lässt sich die unterschiedliche Reaktionsgeschwindigkeit der Reaktionen Essigsäure mit Kalk und Salzsäure mit Kalk erklären? Wie lässt sich die Säure- bzw. Basenkonzentration bestimmen? Wie lassen sich saure und alkalische Lösungen entsorgen? ca. 32 UStd.	Inhaltsfeld Säuren, Basen und analytische Verfahren • Protolysereaktionen: Säure-Base-Konzept nach Brønsted, Säure-/Base-Konstanten (KS, pKS, KB, pKB), Reaktionsgeschwindigkeit, chemisches Gleichgewicht, Massenwirkungsgesetz (Kc), pH-Wert-Berechnungen wässriger Lösungen von starken Säuren und starken Basen • analytische Verfahren: Nachweisreaktionen (Fällungsreaktion, Farbreaktion, Gasentwicklung), Nachweise von Ionen, Säure-Base-Titrationen von starken Säuren und starken Basen (mit Umschlagspunkt) • energetische Aspekte: Erster Hauptsatz der Thermodynamik, Neutralisationsenthalpie, Kalorimetrie • Ionengitter, Ionenbindung	 klassifizieren die auch in Alltagsprodukten identifizierten Säuren und Basen mithilfe des Säure- Base-Konzepts von Brønsted und 	Materialgestützte Erarbeitung und experimentelle Untersuchung der Eigenschaften von ausgewählten sauren, alkalischen und neutralen Reinigern zur Wiederholung bzw. Einführung des Säure-Base-Konzepts nach Brønsted, der pH-Wert-Skala einschließlich pH-Wert-Berechnungen von starken Säuren und Basen Praktikum zur Konzentrationsbestimmung der Säuren- und Basenkonzentration in verschiedenen Reinigern (Essigreiniger, Urinsteinlöser, Abflussreiniger) mittels Säure-Base-Titration mit Umschlagspunkt Erarbeitung von Praxistipps für die sichere Nutzung von Reinigern im Haushalt zur Beurteilung von sauren und basischen Reinigern hinsichtlich ihrer Wirksamkeit und ihres Gefahrenpotentials Experimentelle Untersuchung von Möglichkeiten zur Entsorgung von sauren und alkalischen Lösungen Materialgestützte Erarbeitung des Enthalpiebegriffs am Beispiel der Neutralisationsenthalpie im Kontext der fachgerechten Entsorgung von sauren und alkalischen Lösungen			

Thermodynamik (Prinzip der Energieerhaltung) (S3, S10)

- erläutern die Neutralisationsreaktion unter Berücksichtigung der Neutralisationsenthalpie (S3, S12)
- planen hypothesengeleitet Experimente zur Konzentrationsbestimmung von Säuren und Basen auch in Alltagsprodukten (E1, E2, E3, E4)
- führen das Verfahren einer Säure-Base-Titration mit Endpunktbestimmung mittels Indikator am Beispiel starker Säuren und Basen durch und werten die Ergebnisse auch unter Berücksichtigung einer Fehleranalyse aus (E5, E10, K10)
- bestimmen die Reaktionsenthalpie der Neutralisationsreaktion von starken Säuren mit starken Basen kalorimetrisch und vergleichen das Ergebnis mit Literaturdaten (E5, K1), (MKR 2.1, 2.2)
- beurteilen den Einsatz, die Wirksamkeit und das Gefahrenpotenzial von Säuren, Basen und Salzen als Inhaltsstoffe in Alltagsprodukten und leiten daraus begründet Handlungsoptionen ab (B8, B11, K8), (VB B Z3, Z6)
- bewerten die Qualität von Produkten des Alltags oder Umweltparameter auf der Grundlage von qualitativen und quantitativen

		Analyseergebnissen und beurteilen die Daten hinsichtlich ihrer Aussagekraft (B3, B8, K8). (VB B Z3)	
Unterrichtsvorhaben II	Inhaltsfeld Säuren, Basen und analytische Verfahren	deuten endotherme und exotherme Lösungsvorgänge bei	Praktikum zu den Eigenschaften von Salzen und zu ausgewählten
Salze – hilfreich und lebensnotwendig!	Protolysereaktionen:	Salzen unter Berücksichtigung der Gitter- und Solvatationsenergie (S12, K8)	Nachweisreaktionen der verschiedenen Ionen in den Salzen
Welche Stoffeigenschaften sind verantwortlich für die vielfältige Nutzung verschiedener Salze?	Säure-Base-Konzept nach Brønsted, Säure-/Base- Konstanten (KS, pKS, KB, pKB), Reaktionsgeschwindigkeit, chemisches Gleichgewicht, Massenwirkungsgesetz (Kc),	 weisen ausgewählte lonensorten (Halogenid-lonen, Ammonium- lonen, Carbonat-lonen) salzartiger Verbindungen qualitativ nach (E5) beurteilen den Einsatz, die 	Recherche zur Verwendung, Wirksamkeit und möglichen Gefahren verschiedener ausgewählter Salze in Alltagsbezügen einschließlich einer kritischen Reflexion
Lässt sich die Lösungswärme von Salzen sinnvoll nutzen?	pH-Wert-Berechnungen wässriger Lösungen von starken Säuren und starken Basen	Wirksamkeit und das Gefahrenpotenzial von Säuren, Basen und Salzen als Inhaltsstoffe in Alltagsprodukten und leiten daraus begründet Handlungsoptionen ab	Materialgestützte Untersuchung der Lösungswärme verschiedener Salze zur Beurteilung der Eignung für den Einsatz in selbsterhitzenden und kühlenden Verpackungen
ca. 12 – 14 UStd.	 analytische Verfahren: Nachweisreaktionen (Fällungsreaktion, Farbreaktion, Gasentwicklung), Nachweise von Ionen, Säure-Base-Titrationen von starken Säuren und starken Basen (mit Umschlagspunkt) energetische Aspekte: Erster Hauptsatz der Thermodynamik, Neutralisationsenthalpie, Kalorimetrie Ionengitter, Ionenbindung 	(B8, B11, K8), (VB B Z3, Z6) • bewerten die Qualität von Produkten des Alltags oder Umweltparameter auf der Grundlage von qualitativen und quantitativen Analyseergebnissen und beurteilen die Daten hinsichtlich ihrer Aussagekraft (B3, B8, K8). (VB B Z3)	
Unterrichtsvorhaben III Mobile Energieträger im Vergleich	Inhaltsfeld Elektrochemische Prozesse und Energetik	erläutern Redoxreaktionen als dynamische Gleichgewichtsreaktionen unter Berücksichtigung des Donator- Akzeptor-Konzepts (S7, S12, K7)	Analyse der Bestandteile von Batterien anhand von Anschauungsobjekten; Diagnose bekannter Inhalte aus der SI

Wie unterscheiden sich die Spannungen verschiedener Redoxsysteme?

Wie sind Batterien und Akkumulatoren aufgebaut?

Welcher Akkumulator ist für den Ausgleich von Spannungsschwankungen bei regenerativen Energien geeignet?

ca. 18 UStd.

- Redoxreaktionen als Elektronenübertragungsreakti onen
- Galvanische Zellen:
 Metallbindung (Metallgitter, Elektronengasmodell),
 Ionenbindung,
 elektrochemische
 Spannungsreihe,
 elektrochemische
 Spannungsquellen,
 Berechnung der Zellspannung
 - Elektrolyse
 - alternative Energieträger
- Korrosion: Sauerstoff- und Säurekorrosion, Korrosionsschutz
- energetische Aspekte: Erster Hauptsatz der Thermodynamik, Standardreaktionsenthalpien, Satz von Hess, heterogene Katalyse

- nennen die metallische Bindung und die Beweglichkeit hydratisierter Ionen als Voraussetzungen für einen geschlossenen Stromkreislauf der galvanischen Zelle und der Elektrolyse (S12, S15, K10)
- erläutern den Aufbau und die Funktionsweise einer galvanischen Zelle hinsichtlich der chemischen Prozesse auch mit digitalen Werkzeugen und berechnen die jeweilige Zellspannung (S3, S17, E6, K11), (MKR 1.2)
- erläutern den Aufbau und die Funktion ausgewählter elektrochemischer
 Spannungsquellen aus Alltag und Technik (Batterie, Akkumulator, Brennstoffzelle) unter
 Berücksichtigung der Teilreaktionen und möglicher Zellspannungen (S10, S12, K9)
- erläutern die Reaktionen einer Elektrolyse auf stofflicher und energetischer Ebene als Umkehr der Reaktionen eines galvanischen Elements (S7, S12, K8)
- interpretieren energetische Erscheinungen bei Redoxreaktionen als Umwandlung eines Teils der in Stoffen gespeicherten Energie in Wärme und Arbeit (S3, E11)
- entwickeln Hypothesen zum Auftreten von Redoxreaktionen zwischen Metallatomen und -ionen und überprüfen diese experimentell (E3, E4, E5, E10)

Experimente zu Reaktionen von verschiedenen Metallen und Salzlösungen (Redoxreaktionen als Elektronenübertragungsreaktionen, Wiederholung der Ionenbindung, Erarbeitung der Metallbindung) Aufbau einer galvanischen Zelle (Daniell-Element): Messung von Spannung und Stromfluss (elektrochemische Doppelschicht)

virtuelles Messen von weiteren galvanischen Zellen, Berechnung der Zellspannung bei Standardbedingungen (Bildung von Hypothesen zur Spannungsreihe, Einführung der Spannungsreihe)

Hypothesenentwicklung zum Ablauf von Redoxreaktionen und experimentelle Überprüfung

Modellexperiment einer Zink-Luft-Zelle, Laden und Entladen eines Zink-Luft-Akkus (Vergleich galvanische Zelle – Elektrolyse)

Lernaufgabe: Bedeutung von Akkumulatoren für den Ausgleich von Spannungsschwankungen bei der Nutzung regenerativen Stromquellen • ermitteln Messdaten ausgewählter galvanischer Zellen zur Einordnung in die elektrochemische Spannungsreihe (E6, E8)

 diskutieren Möglichkeiten und Grenzen bei der Umwandlung, Speicherung und Nutzung elektrischer Energie auf Grundlage der relevanten chemischen und thermodynamischen Aspekte im Hinblick auf nachhaltiges Handeln (B3, B10, B13, E12, K8), (VB D Z1, Z3)

 erläutern den Aufbau und die Funktion ausgewählter elektrochemischer
 Spannungsquellen aus Alltag und Technik (Batterie, Akkumulator, Brennstoffzelle) unter
 Berücksichtigung der Teilreaktionen und möglicher Zellspannungen (S10, S12, K9)

- erklären am Beispiel einer Brennstoffzelle die Funktion der heterogenen Katalyse unter Verwendung geeigneter Medien (S8, S12, K11), (MKR 1.2)
- erläutern die Reaktionen einer Elektrolyse auf stofflicher und energetischer Ebene als Umkehr der Reaktionen eines galvanischen Elements (S7, S12, K8)
- interpretieren energetische Erscheinungen bei Redoxreaktionen als Umwandlung eines Teils der in Stoffen gespeicherten Energie in Wärme und Arbeit (S3, E11)

		 ermitteln auch rechnerisch die Standardreaktionsenthalpien ausgewählter Redoxreaktionen unter Anwendung des Satzes von Hess (E4, E7, S17, K2) bewerten die Verbrennung fossiler Energieträger und elektrochemische Energiewandler hinsichtlich Effizienz und Nachhaltigkeit auch mithilfe von recherchierten thermodynamischen Daten (B2, B4, E8, K3, K12), (VB D Z1, Z3) 		
<u>Unterrichtsvorhaben IV</u> Wasserstoff – Brennstoff der	Inhaltsfeld Elektrochemische Prozesse und Energetik	 erläutern den Aufbau und die Funktion ausgewählter elektrochemischer Spannungsquellen aus Alltag und 	Entwicklung von Kriterien zum Autokauf in Bezug auf verschiedene Treibstoffe (Wasserstoff, Erdgas, Autogas, Benzin und Diesel)	
Zukunft?	Redoxreaktionen als	Technik (Batterie, Akkumulator,	rates gas, senem and siesery	
	Elektronenübertragungsreakti	Brennstoffzelle) unter	Untersuchen der	
Wie viel Energie wird bei der	onen	Berücksichtigung der Teilreaktionen und möglicher Zellspannungen (S10,	Verbrennungsreaktionen von Erdgas, Autogas, Wasserstoff, Benzin	
Verbrennungsreaktion	Galvanische Zellen:	S12, K9)	(Heptan) und Diesel (Heizöl):	
verschiedener Energieträger	Metallbindung (Metallgitter,	(22,13)	Nachweisreaktion der	
freigesetzt?	Elektronengasmodell),	erklären am Beispiel einer	Verbrennungsprodukte, Aufstellen	
	Ionenbindung,	Brennstoffzelle die Funktion der	der Redoxreaktionen, energetische	
6 4.4 4 . 4	elektrochemische	heterogenen Katalyse unter Verwendung geeigneter Medien (S8,	Betrachtung der Redoxreaktionen (Grundlagen der chemischen	
Wie funktioniert die	Spannungsreihe,	S12, K11), (MKR 1.2)	Energetik), Ermittlung der	
Wasserstoffverbrennung in der		(Reaktionsenthalpie, Berechnung der	
Brennstoffzelle?	Spannungsquellen,	• erläutern die Reaktionen einer	Verbrennungsenthalpie	
	Berechnung der Zellspannung	Elektrolyse auf stofflicher und		
Welche Vor- und Nachteile hat	• Elektrolyse	energetischer Ebene als Umkehr der Reaktionen eines galvanischen	Wasserstoff als Autoantrieb: Verbrennungsreaktion in der	
die Verwendung der	alternative Energieträger	Elements (S7, S12, K8)	Brennstoffzelle (Erarbeitung der	
verschiedenen Energieträger?	Korrosion: Sauerstoff- und		heterogenen Katalyse); Aufbau der	
	Säurekorrosion,	interpretieren energetische	PEM-Brennstoffzelle	
	Korrosionsschutz	Erscheinungen bei Redoxreaktionen		
ca. 19 UStd.	energetische Aspekte:	als Umwandlung eines Teils der in	Varguele Flaktralyse van Wasser	
	Erster Hauptsatz der	Stoffen gespeicherten Energie in Wärme und Arbeit (S3, E11)	Versuch: Elektrolyse von Wasser zur Gewinnung von Wasserstoff	
	Thermodynamik,	warme and Arbeit (33, L11)	(energetische und stoffliche	
	Standardreaktionsenthalpien,		Betrachtung)	

	Satz von Hess, heterogene Katalyse	 ermitteln auch rechnerisch die Standardreaktionsenthalpien ausgewählter Redoxreaktionen unter Anwendung des Satzes von Hess (E4, E7, S17, K2) bewerten die Verbrennung fossiler Energieträger und elektrochemische Energiewandler hinsichtlich Effizienz und Nachhaltigkeit auch mithilfe von recherchierten thermodynamischen Daten (B2, B4, E8, K3, K12), (VB D Z1, Z3) 		
Unterrichtsvorhaben V Korrosion von Metallen	Inhaltsfeld Elektrochemische Prozesse und Energetik • Redoxreaktionen als	erläutern die Reaktionen einer Elektrolyse auf stofflicher und energetischer Ebene als Umkehr der Reaktionen eines galvanischen Elements (S7, S12, K8)	Erarbeitung einer Mindmap von Korrosionsfolgen anhand von Abbildungen, Materialproben, Informationen zu den Kosten und ökologischen Folgen	
Wie kann man Metalle vor Korrosion schützen?	Elektronenübertragungsreakti onen • Galvanische Zellen: Metallbindung (Metallgitter,	 erläutern die Bildung eines Lokalelements bei Korrosionsvorgängen auch mithilfe 	Experimentelle Untersuchungen zur Säure- und Sauerstoffkorrosion, Bildung eines Lokalelements,	
ca. 8 UStd.	Elektronengasmodell), Ionenbindung, elektrochemische Spannungsreihe, elektrochemische Spannungsquellen, Berechnung der Zellspannung • Elektrolyse • alternative Energieträger • Korrosion: Sauerstoff- und Säurekorrosion, Korrosionsschutz • energetische Aspekte: Erster Hauptsatz der	von Reaktionsgleichungen (S3, S16, E1) • entwickeln eigenständig ausgewählte Experimente zum Korrosionsschutz (Galvanik, Opferanode) und führen sie durch (E1, E4, E5), (VB D Z3) • beurteilen Folgen von Korrosionsvorgängen und adäquate Korrosionsschutzmaßnahmen unter ökologischen und ökonomischen Aspekten (B12, B14, E1). (VB D Z3)	Experimente zu Korrosionsschutzmaßnahmen entwickeln und experimentell überprüfen Diskussion der Nachhaltigkeit verschiedener Korrosionsschutzmaßnahmen	
	Thermodynamik, Standardreaktionsenthalpien,			

Satz von Hess, heterogene		
Katalyse		

	Jahrgangsstufe Q2				
Unterrichtsvorhaben	Inhaltsfelder	Kompetenzerwartungen des KLP und Schwerpunkte der Kompetenzentwicklung	Didaktisch-methodische Anmerkungen und Vorschläge	Weitere Vereinbarungen	
Unterrichtsvorhaben VI Vom Erdöl zur Plastiktüte	Inhaltsfeld Reaktionswege der organischen Chemie • funktionelle Gruppen verschiedener Stoffklassen und ihre	• stellen den Aufbau von Vertretern der Stoffklassen der Alkane, Halogenalkane, Alkene, Alkine, Alkanole, Alkanale, Alkanone, Carbonsäuren, Ester und Amine auch	Einstiegsdiagnose zu den organischen Stoffklassen (funktionelle Gruppen, Nomenklatur, Isomerie, Struktur- Eigenschaftsbeziehungen)		
Wie uurden Behatbulen	Nachweise: Hydroxygruppe, Carbonylgruppe, Carboxygruppe, Estergruppe, Aminogruppe • Alkene, Alkine, Halogenalkane	mit digitalen Werkzeugen dar und berücksichtigen dabei auch ausgewählte Isomere (S1, E7, K11)	Materialgestützte Erarbeitung des Crackprozesses zur Herstellung von		
Wie werden Polyethylen- Abfälle entsorgt?	• Elektronenpaarbindung: Einfach- und Mehrfachbindungen, Oxidationszahlen, Molekülgeometrie	erklären Stoffeigenschaften und Reaktionsverhalten mit dem Einfluss der jeweiligen funktionellen Gruppen			
ca. 30 UStd.	(EPA-Modell) • Konstitutionsisomerie und Stereoisomerie (cis-trans-Isomerie) • inter- und intramolekulare	unter Berücksichtigung von inter- und intramolekularen Wechselwirkungen (S2, S13)	Unterscheidung der gesättigten Edukte und ungesättigten Produkte mit Bromwasser		
	Wechselwirkungen • Naturstoffe: Fette • Reaktionsmechanismen: Radikalische Substitution, elektrophile Addition	erläutern die Reaktionsmechanismen der radikalischen Substitutions- und elektrophilen Additionsreaktion unter Berücksichtigung der	Erarbeitung der Reaktionsmechanismen "radikalische Substitution" und "elektrophile Addition"		
	• Estersynthese: Homogene Katalyse, Prinzip von Le Chatelier	spezifischen Reaktionsbedingungen auch mit digitalen Werkzeugen (S8, S9, S14, E9, K11)	Materialgestützte Vertiefung der Nomenklaturregeln für Alkane, Alkene,		
	Inhaltsfeld Moderne Werkstoffe • Kunststoffe: Struktur und	• schließen mithilfe von spezifischen Nachweisen der	Alkine und Halogenalkane einschließlich ihrer Isomere		
	Eigenschaften, Kunststoffklassen (Thermoplaste, Duroplaste, Elastomere)	Reaktionsprodukte (Doppelbindung zwischen Kohlenstoff-Atomen, Carbonyl- und Carboxy-Gruppe) auf den Reaktionsverlauf und	Materialgestützte Erarbeitung der Synthese des Polyethylens durch die radikalische Polymerisation		

	von Monomeren zu Makromolekülen, Polymerisation • Rohstoffgewinnung und - verarbeitung	bestimmen den Reaktionstyp (E5, E7, S4, K10) • recherchieren und bewerten Nutzen und Risiken ausgewählter Produkte der organischen Chemie unter vorgegebenen Fragestellungen (B1, B11, K2, K4) • erläutern die Verknüpfung von Monomermolekülen zu Makromolekülen mithilfe von Reaktionsgleichungen an einem Beispiel (S4, S12, S16) • beschreiben den Weg eines Anwendungsproduktes von der Rohstoffgewinnung über die Produktion bis zur Verwertung (S5, S10, K1, K2) • bewerten stoffliche und energetische Verfahren der Kunststoffverwertung unter Berücksichtigung ausgewählter Nachhaltigkeitsziele (B6, B13, S3, K5, K8).		
Unterrichtsvorhaben VII Kunststoffe – Werkstoffe für viele Anwendungsprodukte Welche besonderen Eigenschaften haben Kunststoffe? Wie lassen sich Kunststoff mit gewünschten Eigenschaften herstellen?	Inhaltsfeld Reaktionswege der organischen Chemie • funktionelle Gruppen verschiedener Stoffklassen und ihre Nachweise: Hydroxygruppe, Carbonylgruppe, Carboxygruppe, Estergruppe, Aminogruppe • Alkene, Alkine, Halogenalkane	stellen den Aufbau von Vertretern der Stoffklassen der Alkane, Halogenalkane, Alkene, Alkine, Alkanole, Alkanale, Alkanone, Carbonsäuren, Ester und Amine auch mit digitalen Werkzeugen dar und berücksichtigen dabei auch ausgewählte Isomere (S1, E7, K11) erklären Stoffeigenschaften und Reaktionsverhalten mit dem Einfluss der jeweiligen funktionellen Gruppen unter Berücksichtigung von inter- und intramolekularen Wechselwirkungen (S2, S13)	Anknüpfen an das vorangegangene Unterrichtsvorhaben anhand einer Recherche zu weiteren Kunststoffen für Verpackungsmaterialien (Verwendung, Herstellung, eingesetzte Monomere) Praktikum zur Untersuchung der Kunststoffeigenschaften (u. a. Kratzfestigkeit, Bruchsicherheit, Verformbarkeit, Brennbarkeit) anhand von verschiedenen Kunststoffproben (z. B. PE, PP, PS, PVC, PET)	

ca. 20 UStd.

- Elektronenpaarbindung: Einfach- und Mehrfachbindungen, Oxidationszahlen, Molekülgeometrie (EPA-Modell)
- Konstitutionsisomerie und Stereoisomerie (cis-trans-Isomerie)
- inter- und intramolekulare Wechselwirkungen
 - Naturstoffe: Fette
- Reaktionsmechanismen:
 Radikalische Substitution,
 elektrophile Addition
- Estersynthese: Homogene Katalyse, Prinzip von Le Chatelier

Inhaltsfeld Moderne Werkstoffe

- Kunststoffe: Struktur und Eigenschaften, Kunststoffklassen (Thermoplaste, Duroplaste, Elastomere)
- Kunststoffsynthese:
 Verknüpfung von Monomeren zu Makromolekülen,
 Polymerisation
- Rohstoffgewinnung und verarbeitung
- Recycling:Kunststoffverwertung

- erklären die Eigenschaften von Kunststoffen aufgrund ihrer molekularen Strukturen (Kettenlänge, Vernetzungsgrad) (S11, S13)
- klassifizieren Kunststoffe anhand ihrer Eigenschaften begründet nach Thermoplasten, Duroplasten und Elastomeren (S1, S2)
- führen eigenständig geplante Experimente zur Untersuchung von Eigenschaften organischer Werkstoffe durch und werten diese aus (E4, E5)
- planen zielgerichtet anhand der Eigenschaften verschiedener Kunststoffe Experimente zur Trennung und Verwertung von Verpackungsabfällen (E4, S2)
- erklären ermittelte Stoffeigenschaften am Beispiel eines Funktionspolymers mit geeigneten Modellen (E1, E5, E7, S2)
- bewerten den Einsatz von Erdöl und nachwachsenden Rohstoffen für die Herstellung und die Verwendung von Produkten aus Kunststoffen im Sinne einer nachhaltigen Entwicklung aus ökologischer, ökonomischer und sozialer Perspektive (B9, B12, B13)
- vergleichen anhand von Bewertungskriterien Produkte aus unterschiedlichen Kunststoffen und leiten daraus Handlungsoptionen für die alltägliche Nutzung ab (B5, B14, K2, K8, K13).

Klassifizierung der Kunststoffe in Thermoplaste, Duroplaste und Elastomere durch materialgestützte Auswertung der Experimente

Gruppenpuzzle zur Erarbeitung der Herstellung, Entsorgung und Untersuchung der Struktur-Eigenschaftsbeziehungen ausgewählter Kunststoffe in Alltagsbezügen (Expertengruppen z. B. zu Funktionsbekleidung aus Polyester, zu Gleitschirmen aus Polyamid, zu chirurgischem Nahtmaterial aus Polymilchsäure, zu Babywindeln mit Superabsorber)

Bewertungsaufgabe von Kunststoffen aus Erdöl (z.B. Polyester) und nachwachsenden Rohstoffen (z.B. Milchsäure) hinsichtlich ihrer Herstellung, Verwendung und Entsorgung

Fortführung der tabellarischen Übersicht über die bisher erarbeiteten organischen Stoffklassen einschließlich entsprechender Nachweisreaktionen (siehe UV VI)

Unterrichtsvorhaben VIII

Ester in Lebensmitteln und Kosmetikartikeln

Welche Fette sind in Lebensmitteln enthalten?

Wie werden Ester in Kosmetikartikeln hergestellt?

ca. 20 UStd.

Inhaltsfeld Reaktionswege der organischen Chemie

• funktionelle Gruppen verschiedener Stoffklassen und ihre Nachweise:

Hydroxygruppe,

Carbonylgruppe, Carboxygruppe, Estergruppe,

Aminogruppe

- Alkene, Alkine,
 Halogenalkane
- Elektronenpaarbindung: Einfach- und Mehrfachbindungen, Oxidationszahlen,

Molekülgeometrie (EPA-Modell)

- Konstitutionsisomerie und Stereoisomerie (cis-trans-Isomerie)
- inter- und intramolekulare Wechselwirkungen
 - Naturstoffe: Fette
- Reaktionsmechanismen: Radikalische Substitution, elektrophile Addition
- Estersynthese: Homogene Katalyse, Prinzip von Le Chatelier

- erläutern den Aufbau und die Eigenschaften von gesättigten und ungesättigten Fetten (S1, S11, S13)
- erklären Redoxreaktionen in organischen Synthesewegen unter Berücksichtigung der Oxidationszahlen (S3, S11, S16)
- erklären die Estersynthese aus Alkanolen und Carbonsäuren unter Berücksichtigung der Katalyse (S4, S8, S9, K7)
- schließen mithilfe von spezifischen Nachweisen der Reaktionsprodukte (Doppelbindung zwischen Kohlenstoff-Atomen, Carbonyl- und Carboxy-Gruppe) auf den Reaktionsverlauf und bestimmen den Reaktionstyp (E5, E7, S4, K10)
- erläutern die Planung und Durchführung einer Estersynthese in Bezug auf die Optimierung der Ausbeute auf der Grundlage des Prinzips von Le Chatelier (E4, E5, K13)
- unterscheiden experimentell zwischen gesättigten und ungesättigten Fettsäuren (E5, E11)
- beurteilen die Qualität von Fetten hinsichtlich ihrer Zusammensetzung und Verarbeitung im Bereich der Lebensmitteltechnik und der eigenen Ernährung (B7, B8, K8).

Materialgestützte Erarbeitung und experimentelle Untersuchung der Eigenschaften von ausgewählten fett- und ölhaltigen Lebensmitteln

- Aufbau und Eigenschaften (Löslichkeit) von gesättigten und ungesättigten Fetten
- Experimentelle Unterscheidung von gesättigten und ungesättigten Fettsäuren (Jodzahl)
- Fetthärtung: Hydrierung von Fettsäuren (z. B. Demonstrationsversuch Hydrierung von Olivenöl mit Nickelkatalysator) und Wiederholung von Redoxreaktionen Materialgestützte Bewertung der Qualität von verarbeiteten Fetten auch in Bezug auf Ernährungsempfehlungen

Aufbau, Verwendung, Planung der Herstellung des Wachsesters Myristylmyristat mit Wiederholung der Estersynthese

Experimentelle Erarbeitung der Synthese von Myristylmyristat (Ermittlung des chemischen Gleichgewichts und der Ausbeute, Einfluss von Konzentrationsänderungen – Le Chatelier, Bedeutung von Katalysatoren)